Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Histopathology ; 84(6): 915-923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433289

RESUMEN

A growing body of research supports stromal tumour-infiltrating lymphocyte (TIL) density in breast cancer to be a robust prognostic and predicive biomarker. The gold standard for stromal TIL density quantitation in breast cancer is pathologist visual assessment using haematoxylin and eosin-stained slides. Artificial intelligence/machine-learning algorithms are in development to automate the stromal TIL scoring process, and must be validated against a reference standard such as pathologist visual assessment. Visual TIL assessment may suffer from significant interobserver variability. To improve interobserver agreement, regulatory science experts at the US Food and Drug Administration partnered with academic pathologists internationally to create a freely available online continuing medical education (CME) course to train pathologists in assessing breast cancer stromal TILs using an interactive format with expert commentary. Here we describe and provide a user guide to this CME course, whose content was designed to improve pathologist accuracy in scoring breast cancer TILs. We also suggest subsequent steps to translate knowledge into clinical practice with proficiency testing.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Patólogos , Linfocitos Infiltrantes de Tumor , Inteligencia Artificial , Pronóstico
2.
Virol J ; 21(1): 40, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341597

RESUMEN

Since the onset of the coronavirus disease (COVID-19) pandemic in Belgium, UZ/KU Leuven has played a crucial role as the National Reference Centre (NRC) for respiratory pathogens, to be the first Belgian laboratory to develop and implement laboratory developed diagnostic assays for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and later to assess the quality of commercial kits. To meet the growing demand for decentralised testing, both clinical laboratories and government-supported high-throughput platforms were gradually deployed across Belgium. Consequently, the role of the NRC transitioned from a specialised testing laboratory to strengthening capacity and coordinating quality assurance. Here, we outline the measures taken by the NRC, the national public health institute Sciensano and the executing clinical laboratories to ensure effective quality management of molecular testing throughout the initial two years of the pandemic (March 2020 to March 2022).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Bélgica/epidemiología , Prueba de COVID-19 , Pandemias , Técnicas de Laboratorio Clínico , Técnicas de Diagnóstico Molecular
3.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954349

RESUMEN

External quality assessment (EQA) schemes are a tool for clinical laboratories to evaluate and manage the quality of laboratory practice with the support of an independent party (i.e., an EQA provider). Depending on the context, there are different types of EQA schemes available, as well as various EQA providers, each with its own field of expertise. In this review, an overview of the general requirements for EQA schemes and EQA providers based on international guidelines is provided. The clinical and scientific value of these kinds of schemes for clinical laboratories, clinicians and patients are highlighted, in addition to the support EQA can provide to other types of laboratories, e.g., laboratories affiliated to biotech companies. Finally, recent developments and challenges in laboratory medicine and quality management, for example, the introduction of artificial intelligence in the laboratory and the shift to a more individual-approach instead of a laboratory-focused approach, are discussed. EQA schemes should represent current laboratory practice as much as possible, which poses the need for EQA providers to introduce latest laboratory innovations in their schemes and to apply up-to-date guidelines. By incorporating these state-of-the-art techniques, EQA aims to contribute to continuous learning.

4.
BMC Cancer ; 22(1): 736, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794532

RESUMEN

BACKGROUND: For patients with non-small cell lung cancer (NSCLC), targeted therapies are becoming part of the standard treatment. It is of question which information the clinicians provide on test requests and how the laboratories adapt test conclusions to this knowledge and regulations. METHODS: This study consisted of two components; 1) checking the presence of pre-defined elements (administrative and key for therapy-choice) on completed requests and corresponding reports in Belgian laboratories, both for tissue- and liquid biopsy (LB)-testing and b) opinion analysis from Belgian pathologists/molecular biologists and clinicians during national pathology/oncology meetings. RESULTS: Data from 4 out of 6 Belgian laboratories with ISO-accreditation for LB-testing were analyzed, of which 75% were university hospitals. On the scored requests (N = 4), 12 out of 19 ISO-required elements were present for tissue and 11 for LB-testing. Especially relevant patient history, such as line of therapy (for LB), tumor histology and the reason for testing were lacking. Similarly, 11 and 9 out of 18 elements were present in the reports (N = 4) for tissue and LB, respectively. Elements that pathologists/molecular biologists (N = 18) were missing on the request were the initial activating mutation, previous therapies, a clinical question and testing-related information. For reporting, an item considered important by both groups is the clinical interpretation of the test result. In addition, clinicians (N = 28) indicated that they also wish to read the percentage of neoplastic cells. CONCLUSIONS: Communication flows between the laboratory and the clinician, together with possible pitfalls were identified. Based on the study results, templates for complete requesting and reporting were proposed.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Biopsia Líquida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Técnicas de Diagnóstico Molecular , Patología Molecular
5.
BMC Cancer ; 22(1): 759, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35820813

RESUMEN

BACKGROUND: Circulating cell free DNA (cfDNA) testing of plasma for EGFR somatic variants in lung cancer patients is being widely implemented and with any new service, external quality assessment (EQA) is required to ensure patient safety. An international consortium, International Quality Network for Pathology (IQNPath), has delivered a second round of assessment to measure the accuracy of cfDNA testing for lung cancer and the interpretation of the results. METHODS: A collaboration of five EQA provider organisations, all members of IQNPath, have delivered the assessment during 2018-19 to a total of 264 laboratories from 45 countries. Bespoke plasma reference material containing a range of EGFR mutations at varying allelic frequencies were supplied to laboratories for testing and reporting according to routine procedures. The genotyping accuracy and clinical reporting was reviewed against standardised criteria and feedback was provided to participants. RESULTS: The overall genotyping error rate in the EQA was found to be 11.1%. Low allelic frequency samples were the most challenging and were not detected by some testing methods, resulting in critical genotyping errors. This was reflected in higher false negative rates for samples with variant allele frequencies (VAF) rates less than 1.5% compared to higher frequencies. A sample with two different EGFR mutations gave inconsistent detection of both mutations. However, for one sample, where two variants were present at a VAF of less than 1% then both mutations were correctly detected in 145/263 laboratories. Reports often did not address the risk that tumour DNA may have not been tested and limitations of the methodologies provided by participants were insufficient. This was reflected in the average interpretation score for the EQA being 1.49 out of a maximum of 2. CONCLUSIONS: The variability in the standard of genotyping and reporting highlighted the need for EQA and educational guidance in this field to ensure the delivery of high-quality clinical services where testing of cfDNA is the only option for clinical management.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Receptores ErbB/genética , Frecuencia de los Genes , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutación
6.
Virchows Arch ; 481(3): 335-350, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35857102

RESUMEN

Biomarker testing is crucial for treatment selection in advanced non-small cell lung cancer (NSCLC). However, the quantity of available tissue often presents a key constraint for patients with advanced disease, where minimally invasive tissue biopsy typically returns small samples. In Part 1 of this two-part series, we summarise evidence-based recommendations relating to small sample processing for patients with NSCLC. Generally, tissue biopsy techniques that deliver the greatest quantity and quality of tissue with the least risk to the patient should be selected. Rapid on-site evaluation can help to ensure sufficient sample quality and quantity. Sample processing should be managed according to biomarker testing requirements, because tissue fixation methodology influences downstream nucleic acid, protein and morphological analyses. Accordingly, 10% neutral buffered formalin is recommended as an appropriate fixative, and the duration of fixation is recommended not to exceed 24-48 h. Tissue sparing techniques, including the 'one biopsy per block' approach and small sample cutting protocols, can help preserve tissue. Cytological material (formalin-fixed paraffin-embedded [FFPE] cytology blocks and non-FFPE samples such as smears and touch preparations) can be an excellent source of nucleic acid, providing either primary or supplementary patient material to complete morphological and molecular diagnoses. Considerations on biomarker testing, reporting and quality assessment are discussed in Part 2.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ácidos Nucleicos , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/patología , Testimonio de Experto , Fijadores , Formaldehído , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Adhesión en Parafina , Fijación del Tejido/métodos
7.
Virchows Arch ; 481(3): 351-366, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35857103

RESUMEN

The diagnostic work-up for non-small cell lung cancer (NSCLC) requires biomarker testing to guide therapy choices. This article is the second of a two-part series. In Part 1, we summarised evidence-based recommendations for obtaining and processing small specimen samples (i.e. pre-analytical steps) from patients with advanced NSCLC. Here, in Part 2, we summarise evidence-based recommendations relating to analytical steps of biomarker testing (and associated reporting and quality assessment) of small specimen samples in NSCLC. As the number of biomarkers for actionable (genetic) targets and approved targeted therapies continues to increase, simultaneous testing of multiple actionable oncogenic drivers using next-generation sequencing (NGS) becomes imperative, as set forth in European Society for Medical Oncology guidelines. This is particularly relevant in advanced NSCLC, where tissue specimens are typically limited and NGS may help avoid tissue exhaustion compared with sequential biomarker testing. Despite guideline recommendations, significant discrepancies in access to NGS persist across Europe, primarily due to reimbursement constraints. The use of increasingly complex testing methods also has implications for the reporting of results. Molecular testing reports should include clinical interpretation with additional commentary on sample adequacy as appropriate. Molecular tumour boards are recommended to facilitate the interpretation of complex genetic information arising from NGS, and to collaboratively determine the optimal treatment for patients with NSCLC. Finally, whichever testing modality is employed, it is essential that adequate internal and external validation and quality control measures are implemented.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Testimonio de Experto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación
9.
Eur J Hum Genet ; 30(9): 1011-1016, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35361922

RESUMEN

Results of clinical genomic testing must be reported in a clear, concise format to ensure they are understandable and interpretable. It is important laboratories are aware of the information which is essential to make sure the results are not open to misinterpretation. As genomic testing has continued to evolve over the past decade, the European Society of Human Genetics (ESHG) recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic) published in 2014 have been reviewed and updated to provide the genomic community with guidance on reporting unambiguous results.


Asunto(s)
Pruebas Genéticas , Genómica , Humanos
10.
Life (Basel) ; 12(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35207446

RESUMEN

We present our approach to rapidly establishing a standardized, multi-site, nation-wide COVID-19 screening program in Belgium. Under auspices of a federal government Task Force responsible for upscaling the country's testing capacity, we were able to set up a national testing initiative with readily available resources, putting in place a robust, validated, high-throughput, and decentralized qPCR molecular testing platform with embedded proficiency testing. We demonstrate how during an acute scarcity of equipment, kits, reagents, personnel, protective equipment, and sterile plastic supplies, we introduced an approach to rapidly build a reliable, validated, high-volume, high-confidence workflow based on heterogeneous instrumentation and diverse assays, assay components, and protocols. The workflow was set up with continuous quality control monitoring, tied together through a clinical-grade information management platform for automated data analysis, real-time result reporting across different participating sites, qc monitoring, and making result data available to the requesting physician and the patient. In this overview, we address challenges in optimizing high-throughput cross-laboratory workflows with minimal manual intervention through software, instrument and assay validation and standardization, and a process for harmonized result reporting and nation-level infection statistics monitoring across the disparate testing methodologies and workflows, necessitated by a rapid scale-up as a response to the pandemic.

11.
Virchows Arch ; 479(2): 365-376, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33686511

RESUMEN

Clonality analysis of immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements is routine practice to assist diagnosis of lymphoid malignancies. Participation in external quality assessment (EQA) aids laboratories in identifying systematic shortcomings. The aim of this study was to evaluate laboratories' improvement in IG/TR analysis and interpretation during five EQA rounds between 2014 and 2018. Each year, participants received a total of five cases for IG and five cases for TR testing. Paper-based cases were included for analysis of the final molecular conclusion that should be interpreted based on the integration of the individual PCR results. Wet cases were distributed for analysis of their routine protocol as well as evaluation of the final molecular conclusion. In total, 94.9% (506/533) of wet tests and 97.9% (829/847) of paper tests were correctly analyzed for IG, and 96.8% (507/524) wet tests and 93.2% (765/821) paper tests were correctly analyzed for TR. Analysis scores significantly improved when laboratories participated to more EQA rounds (p=0.001). Overall performance was significantly lower (p=0.008) for non-EuroClonality laboratories (95% for IG and 93% for TR) compared to EuroClonality laboratories (99% for IG and 97% for TR). The difference was not related to the EQA scheme year, anatomic origin of the sample, or final clinical diagnosis. This evaluation showed that repeated EQA participation helps to reduce performance differences between laboratories (EuroClonality versus non-EuroClonality) and between sample types (paper versus wet). The difficulties in interpreting oligoclonal cases highlighted the need for continued education by meetings and EQA schemes.


Asunto(s)
Reordenamiento Génico , Genes de Inmunoglobulinas , Genes Codificadores de los Receptores de Linfocitos T , Trastornos Linfoproliferativos/genética , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa , Humanos , Ensayos de Aptitud de Laboratorios , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/patología , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Garantía de la Calidad de Atención de Salud , Control de Calidad , Reproducibilidad de los Resultados
12.
JMIR Form Res ; 5(3): e19408, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33739293

RESUMEN

BACKGROUND: The amount of stroma in the primary tumor is an important prognostic parameter. The tumor-stroma ratio (TSR) was previously validated by international research groups as a robust parameter with good interobserver agreement. OBJECTIVE: The Uniform Noting for International Application of the Tumor-Stroma Ratio as an Easy Diagnostic Tool (UNITED) study was developed to bring the TSR to clinical implementation. As part of the study, an e-Learning module was constructed to confirm the reproducibility of scoring the TSR after proper instruction. METHODS: The e-Learning module consists of an autoinstruction for TSR determination (instruction video or written protocol) and three sets of 40 cases (training, test, and repetition sets). Scoring the TSR is performed on hematoxylin and eosin-stained sections and takes only 1-2 minutes. Cases are considered stroma-low if the amount of stroma is ≤50%, whereas a stroma-high case is defined as >50% stroma. Inter- and intraobserver agreements were determined based on the Cohen κ score after each set to evaluate the reproducibility. RESULTS: Pathologists and pathology residents (N=63) with special interest in colorectal cancer participated in the e-Learning. Forty-nine participants started the e-Learning and 31 (63%) finished the whole cycle (3 sets). A significant improvement was observed from the training set to the test set; the median κ score improved from 0.72 to 0.77 (P=.002). CONCLUSIONS: e-Learning is an effective method to instruct pathologists and pathology residents for scoring the TSR. The reliability of scoring improved from the training to the test set and did not fall back with the repetition set, confirming the reproducibility of the TSR scoring method. TRIAL REGISTRATION: The Netherlands Trial Registry NTR7270; https://www.trialregister.nl/trial/7072. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/13464.

13.
Arch Pathol Lab Med ; 145(10): 1270-1279, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406246

RESUMEN

CONTEXT.­: Errors in laboratory medicine could compromise patient safety. Good laboratory practice includes identifying and managing nonconformities in the total test process. Varying error percentages have been described in other fields but are lacking for molecular oncology. OBJECTIVES.­: To gain insight into incident causes and frequency in the total test process from 8 European institutes routinely performing biomarker tests in non-small cell lung cancer and colorectal cancer. DESIGN.­: All incidents documented in 2018 were collected from all hospital services for pre-preanalytical entries before the biomarker test, as well as specific incidents for biomarker tests. RESULTS.­: There were 5185 incidents collected, of which 4363 (84.1%) occurred in the pre-preanalytical phase (all hospital services), 2796 of 4363 (64.1%) related to missing or incorrect request form information. From the other 822 specific incidents, 166 (20.2%) were recorded in the preanalytical phase, 275 (33.5%) in the analytical phase, and 194 (23.6%) in the postanalytical phase, mainly due to incorrect report content. Only 47 of 822 (5.7%) incidents were recorded in the post-postanalytical phase, and 123 (15.0%) in the complete total test process. For 17 of 822 (2.1%) incidents the time point was unknown. Pre-preanalytical incidents were resolved sooner than incidents on the complete process (mean 6 versus 60 days). For 1215 of 5168 (23.5%) incidents with known causes a specific action was undertaken besides documenting them, not limited to accredited institutes. CONCLUSIONS.­: There was a large variety in the number and extent of documented incidents. Correct and complete information on the request forms and final reports are highly error prone and require additional focus.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Colorrectales/patología , Laboratorios de Hospital/normas , Neoplasias Pulmonares/patología , Patología Molecular/normas , Biomarcadores/análisis , Estudios Transversales , Pruebas Diagnósticas de Rutina , Europa (Continente) , Humanos , Errores Médicos/estadística & datos numéricos , Seguridad del Paciente , Garantía de la Calidad de Atención de Salud
14.
Virchows Arch ; 478(3): 553-565, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33047156

RESUMEN

In personalized medicine, predictive biomarker testing is the basis for an appropriate choice of therapy for patients with cancer. An important tool for laboratories to ensure accurate results is participation in external quality assurance (EQA) programs. Several providers offer predictive EQA programs for different cancer types, test methods, and sample types. In 2013, a guideline was published on the requirements for organizing high-quality EQA programs in molecular pathology. Now, after six years, steps were taken to further harmonize these EQA programs as an initiative by IQNPath ABSL, an umbrella organization founded by various EQA providers. This revision is based on current knowledge, adds recommendations for programs developed for predictive biomarkers by in situ methodologies (immunohistochemistry and in situ hybridization), and emphasized transparency and an evidence-based approach. In addition, this updated version also has the aim to give an overview of current practices from various EQA providers.


Asunto(s)
Biomarcadores de Tumor , Pruebas Diagnósticas de Rutina/normas , Inmunohistoquímica/normas , Hibridación in Situ/normas , Oncología Médica/normas , Neoplasias/química , Neoplasias/genética , Indicadores de Calidad de la Atención de Salud/normas , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Consenso , Humanos , Neoplasias/patología , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Control de Calidad , Mejoramiento de la Calidad/normas , Reproducibilidad de los Resultados
15.
Virchows Arch ; 478(5): 827-839, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33275169

RESUMEN

Programmed death ligand 1 (PD-L1) immunohistochemistry (IHC) is accepted as a predictive biomarker for the selection of immune checkpoint inhibitors. We evaluated the staining quality and estimation of the tumor proportion score (TPS) in non-small-cell lung cancer during two external quality assessment (EQA) schemes by the European Society of Pathology. Participants received two tissue micro-arrays with three (2017) and four (2018) cases for PD-L1 IHC and a positive tonsil control, for staining by their routine protocol. After the participants returned stained slides to the EQA coordination center, three pathologists assessed each slide and awarded an expert staining score from 1 to 5 points based on the staining concordance. Expert scores significantly (p < 0.01) improved between EQA schemes from 3.8 (n = 67) to 4.3 (n = 74) on 5 points. Participants used 32 different protocols: the majority applied the 22C3 (56.7%) (Dako), SP263 (19.1%) (Ventana), and E1L3N (Cell Signaling) (7.1%) clones. Staining artifacts consisted mainly of very weak or weak antigen demonstration (63.0%) or excessive background staining (19.8%). Participants using CE-IVD kits reached a higher score compared with those using laboratory-developed tests (LDTs) (p < 0.05), mainly attributed to a better concordance of SP263. The TPS was under- and over-estimated in 20/423 (4.7%) and 24/423 (5.7%) cases, respectively, correlating to a lower expert score. Additional research is needed on the concordance of less common protocols, and on reasons for lower LDT concordance. Laboratories should carefully validate all test methods and regularly verify their performance. EQA participation should focus on both staining concordance and interpretation of PD-L1 IHC.


Asunto(s)
Antígeno B7-H1/análisis , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Inmunohistoquímica , Neoplasias Pulmonares/inmunología , Artefactos , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Toma de Decisiones Clínicas , Europa (Continente) , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ensayos de Aptitud de Laboratorios , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Análisis de Matrices Tisulares
16.
Eur J Hum Genet ; 29(3): 365-377, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33223530

RESUMEN

If genome sequencing is performed in health care, in theory the opportunity arises to take a further look at the data: opportunistic genomic screening (OGS). The European Society of Human Genetics (ESHG) in 2013 recommended that genome analysis should be restricted to the original health problem at least for the time being. Other organizations have argued that 'actionable' genetic variants should or could be reported (including American College of Medical Genetics and Genomics, French Society of Predictive and Personalized Medicine, Genomics England). They argue that the opportunity should be used to routinely and systematically look for secondary findings-so-called opportunistic screening. From a normative perspective, the distinguishing characteristic of screening is not so much its context (whether public health or health care), but the lack of an indication for having this specific test or investigation in those to whom screening is offered. Screening entails a more precarious benefits-to-risks balance. The ESHG continues to recommend a cautious approach to opportunistic screening. Proportionality and autonomy must be guaranteed, and in collectively funded health-care systems the potential benefits must be balanced against health care expenditures. With regard to genome sequencing in pediatrics, ESHG argues that it is premature to look for later-onset conditions in children. Counseling should be offered and informed consent is and should be a central ethical norm. Depending on developing evidence on penetrance, actionability, and available resources, OGS pilots may be justified to generate data for a future, informed, comparative analysis of OGS and its main alternatives, such as cascade testing.


Asunto(s)
Pruebas Genéticas/normas , Genética Humana/normas , Guías de Práctica Clínica como Asunto , Sociedades Médicas/normas , Europa (Continente) , Pruebas Genéticas/ética , Genética Humana/ética , Genética Humana/organización & administración , Humanos
17.
Virchows Arch ; 478(5): 995-1006, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33225398

RESUMEN

External quality assessment (EQA) schemes assess the performance of predictive biomarker testing in lung and colorectal cancer and have previously demonstrated variable error rates. No information is currently available on the underlying causes of incorrect EQA results in the laboratories. Participants in EQA schemes by the European Society of Pathology between 2014 and 2018 for lung and colorectal cancer were contacted to complete a survey if they had at least one analysis error or test failure in the provided cases. Of the 791 surveys that were sent, 325 were completed including data from 185 unique laboratories on 514 incorrectly analyzed or failed cases. For the digital cases and immunohistochemistry, the majority of errors were interpretation-related. For fluorescence in situ hybridization, problems with the EQA materials were reported frequently. For variant analysis, the causes were mainly methodological for lung cancer but variable for colorectal cancer. Post-analytical (clerical and interpretation) errors were more likely detected after release of the EQA results compared to pre-analytical and analytical issues. Accredited laboratories encountered fewer reagent problems and more often responded to the survey. A recent change in test methodology resulted in method-related problems. Testing more samples annually introduced personnel errors and lead to a lower performance in future schemes. Participation to quality improvement projects is important to reduce deviating test results in laboratories, as the different error causes differently affect the test performance. EQA providers could benefit from requesting root cause analyses behind errors to offer even more tailored feedback, subschemes, and cases.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Neoplasias Colorrectales/diagnóstico , Inmunohistoquímica/normas , Hibridación Fluorescente in Situ/normas , Neoplasias Pulmonares/diagnóstico , Indicadores de Calidad de la Atención de Salud/normas , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/química , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Colorrectales/química , Neoplasias Colorrectales/genética , Estudios de Factibilidad , Encuestas de Atención de la Salud , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Garantía de la Calidad de Atención de Salud/normas , Mejoramiento de la Calidad/normas , Reproducibilidad de los Resultados
18.
Diagnostics (Basel) ; 10(10)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33080995

RESUMEN

Laboratories testing predictive biomarkers in lung and colorectal cancer are advised to participate in external quality assessment (EQA) schemes. This study aimed to investigate which corrective actions were taken by laboratories if predetermined performance criteria were not met, to ultimately improve current test practices. EQA participants from the European Society of Pathology between 2014 and 2018 for lung and colorectal cancer were contacted, if they had at least one analysis error or test failure in the provided cases, to complete a survey. For 72.4% of 514 deviating EQA results, an appropriate action was performed, most often including staff training (15.2%) and protocol revisions (14.6%). Main assigned persons were the molecular biologist (40.0%) and pathologist (46.5%). A change in test method or the use of complex techniques, such as next-generation sequencing, required more training and the involvement of dedicated personnel to reduce future test failures. The majority of participants adhered to ISO 15189 and implemented suitable actions by designated staff, not limited to accredited laboratories. However, for 27.6% of cases (by 20 laboratories) no corrective action was taken, especially for pre-analytic problems and complex techniques. The surveys were feasible to request information on results follow-up and further recommendations were provided.

19.
J Mol Diagn ; 22(12): 1438-1452, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011443

RESUMEN

Selection of non-small-cell lung cancer patients for treatment relies on the detection of expression of anaplastic lymphoma kinase (ALK) and ROS proto-oncogene 1 (ROS1) protein by immunohistochemistry (IHC). We evaluated staining performance for different IHC protocols and laboratory characteristics, and their influence on ALK and ROS1 interpretation during external quality assessment schemes between 2015 and 2018. Participants received five formalin-fixed, paraffin-embedded cases for staining by their routine protocol, whereafter at least two pathologists scored them simultaneously under a multihead microscope and awarded a graded expert staining score (ESS) from 1 to 5 points based on staining quality. European Conformity in Vitro Diagnostic kits (such as D5F3) revealed a better ALK ESS compared with laboratory-developed tests. ESS was indifferent to the applied antibody dilution or a recent protocol change. Lower ESSs were observed for higher antibody incubation times and temperatures. ESS for various ROS1 protocols were largely similar. Overall, for both markers, ESS improved over time and for repeated external quality assessment participation but was independent of laboratory setting or experience. Except for ROS1, ESS positively correlated with laboratory accreditation. IHC stains with lower ESS correlated with increased error rates in ALK and ROS1 interpretation and analysis failures. Laboratory characteristics differently affected staining quality and interpretation, and laboratories should assess both aspects, and less common protocols need improvement in staining performance.


Asunto(s)
Quinasa de Linfoma Anaplásico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Inmunohistoquímica/métodos , Neoplasias Pulmonares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Hibridación Fluorescente in Situ/métodos , Laboratorios de Hospital , Patólogos , Proto-Oncogenes Mas , Sensibilidad y Especificidad
20.
Clin Chem Lab Med ; 59(1): 101-106, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32692695

RESUMEN

Objectives: The new European In Vitro Diagnostic (IVD) Regulation 2017/746 (IVDR) restricts the use of lab-developed tests (LDT) after 26th May 2022. There are no data on the impact of the IVDR on laboratories in the European Union. Methods: Laboratory tests performed in UZ Leuven were divided in four groups: core laboratory, immunology, special chemistry, and molecular microbiology testing. Each test was classified as Conformité Européenne (CE)-IVD, modified/off-label CE-IVD, commercial Research Use Only (RUO) or LDT. Each matrix was considered a separate test. Results: We found that 97.6% of the more than 11.5 million results/year were generated with a CE-IVD method. Of the 922 different laboratory tests, however, only 41.8% were CE-IVD, 10.8% modified/off-label CE-IVD, 0.3% RUO, and 47.1% LDT. Off-label CE-IVD was mainly used to test alternative matrices not covered by the claim of the manufacturer (e.g., pleural or peritoneal fluid). LDTs were mainly used for special chemistry, flow cytometry, and molecular testing. Excluding flow cytometry, the main reasons for the use of 377 LDTs were lack of a CE-IVD method (71.9%), analytical requirements (14.3%), and the fact the LDT was in use before CE-IVD available (11.9%). Conclusions: While the large majority of results (97.6%) were generated with a CE-IVD method, only 41.8% of laboratory tests were CE-IVD. There is currently no alternative on the market for 71.5% of the 537 LDTs performed in our laboratory which do not fall within the scope of the current IVD directive (IVDD). Compliance with the IVDR will require a major investment of time and effort.


Asunto(s)
Hospitales Universitarios/normas , Laboratorios de Hospital/normas , Juego de Reactivos para Diagnóstico/normas , Bélgica , Técnicas de Química Analítica/normas , Técnicas de Química Analítica/estadística & datos numéricos , Hospitales Universitarios/legislación & jurisprudencia , Hospitales Universitarios/estadística & datos numéricos , Humanos , Pruebas Inmunológicas/normas , Pruebas Inmunológicas/estadística & datos numéricos , Laboratorios de Hospital/legislación & jurisprudencia , Laboratorios de Hospital/estadística & datos numéricos , Técnicas Microbiológicas/normas , Técnicas Microbiológicas/estadística & datos numéricos , Juego de Reactivos para Diagnóstico/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...